
李好好 博士,现任浙江财经大学数据科学学院副教授,硕士研究生导师。主要研究领域为运筹学、组合数学、控制论。
2014年6月至今,浙江财经大学任教。
2009年9月-2014年6月,浙江大学运筹学与控制论专业学习,获博士学位,师从谈之奕教授。
2005年9月-2009年6月,兰州大学数学与应用数学专业学习,获学士学位。
[1] “区间线性系统的Farkas型定理研究” (项目编号:11701506),国家自然科学基金青年科学基金项目, 21万元(立项金额), 2018.01-2020.12(立项时间),主持;
[2] “两类保密排序问题的算法研究” (项目编号:11526184),国家自然科学基金数学天元基金项目, 3万元(立项金额), 2016.01-2016.12(立项时间),主持;
[3] “基于路径设计的居民雾霾健康成本测度及监管研究” (项目编号:16CTJ010),国家社会科学基金青年项目, 20万元(立项金额), 2016.06-2019.6(立项时间),3/5;
[4] “分散决策模式下的排序问题研究” (项目编号:11271324),国家自然科学基金面上项目, 60万元(立项金额), 2013.01-2016.12(立项时间),6/10.
[1] L. Wang, H. Li*, AE solutions to two-sided interval linear systems over max-plus algebra, Journal of Inequalities and Application, 2018, 291:1-13, SCI 三区.
[2] H. Li*, M. Xia, Farkas-type conditions of general interval linear systems for AE solvability, Linear Algebra and its Applications, 2017, 514:208-221, SCI 三区.
[3] W. Li, J. Jin, M. Xia, H. Li*, Some properties of the lower bound of optimal values in interval convex quadratic programming, Optimization Letters, 2017, 11(7): 1443–1458. SCI三区.
[4] W. Li, M. Xia, H. Li*, Some results on the upper bound of optimal values in interval convex quadratic programming, Journal of Computational and Applied Mathematics, 2016, 302:38-49. SCI二区.
[5]W. Li, P. Liu, H. Li*, Checking weak optimality of the solution to interval linear program in the general form, Optimization Letters, 2016, 10:77-88, SCI三区.
[6] H. Li*, Necessary and sufficient conditions for unified optimality of interval linear program in the general form, Linear Algebra and its Applications, 2015, 484:154-174, SCI 三区.
[7] M. Xia, W. Li, H. Li*, Farkas-type theorems for interval linear systems, Linear & Multilinear Algebra, 2015, 63:1390–1400, SCI 三区.
[8] H. Li*, J. Luo, Q. Wang, Solvability and feasibility of interval linear equations and inequalities, Linear Algebra and its Applications, .2014, 463:78–94, SCI 三区.
[9] H. Li*, An interesting characteristic of phase-1 of dual–primal algorithm for linear programming, Optimization Methods and Software, 2014, 29(3):497-502, SCI 三区.